Город:
п. Вольгинский.
Регалии:
Кандидат биологических наук, АО «Генериум».
Образование:
Институт Молекулярной биологии им. В.А. Энгельгардта РАН, биологический факультет МГУ им. М.В. Ломоносова (аспирантура).
Специальность:
Биолог/биохимик, молекулярный биолог.
Ученая степень, ученое звание:
Кандидат биологических наук.
Научные публикации:
1.Bogdanov Yu, D., et al., Identification of two novel genes specifically expressed in the D-group neurons of the terrestrial snail CNS. Invert Neurosci, 1996. 2(1): p. 61-9.2.Poteryaev, D.A., et al., Characterization of a cDNA clone encoding pedal peptide in the terrestrial snail. Neuroreport, 1997. 8(16): p. 3631-5.
3. Bogdanov, Y.D., et al., Putative neuropeptides and an EF-hand motif region are encoded by a novel gene expressed in the four giant interneurons of the terrestrial snail. Neuroscience, 1998. 85(2): p. 637-47.
4. Poteryaev, D.A., et al., A novel neuropeptide precursor gene is expressed in the terrestrial snail central nervous system by a group of neurons that control mating behavior. J Neurobiol, 1998. 35(2): p. 183-97.
5. Poteryaev, D., et al., GDNF triggers a novel ret-independent Src kinase family-coupled signaling via a GPI-linked GDNF receptor alpha1. FEBS Lett, 1999. 463(1-2): p. 63-6.
6. Rossi, J., et al., Retarded growth and deficits in the enteric and parasympathetic nervous system in mice lacking GFR alpha2, a functional neurturin receptor. Neuron, 1999. 22(2): p. 243-52.
7. Balaban, P.M., et al., Up- and down-regulation of Helix command-specific 2 (HCS2) gene expression in the nervous system of terrestrial snail Helix lucorum. Neuroscience, 2001. 103(2): p. 551-9.
8.Lindahl, M., et al., Human glial cell line-derived neurotrophic factor receptor alpha 4 is the receptor for persephin and is predominantly expressed in normal and malignant thyroid medullary cells. J Biol Chem, 2001. 276(12): p. 9344-51.
9. Popsueva, A.E., et al., Overexpression of camello, a member of a novel protein family, reduces blastomere adhesion and inhibits gastrulation in Xenopus laevis. Dev Biol, 2001. 234(2): p. 483-96.
10. Poteriaev, D.A. and M. Saarma, [The GDNF family: from neurotrophic factors to oncogenesis]. Mol Biol (Mosk), 2001. 35(2): p. 309-20.
11. Popsueva, A., et al., GDNF promotes tubulogenesis of GFRalpha1-expressing MDCK cells by Src-mediated phosphorylation of Met receptor tyrosine kinase. J Cell Biol, 2003. 161(1): p. 119-29.
12. Poteryaev, D. and A. Spang, A role of SAND-family proteins in endocytosis. Biochem Soc Trans, 2005. 33(Pt 4): p. 606-8.
13. Poteryaev, D., et al., Involvement of the actin cytoskeleton and homotypic membrane fusion in ER dynamics in Caenorhabditis elegans. Mol Biol Cell, 2005. 16(5): p. 2139-53.
14. Bembenek, J.N., et al., Cortical granule exocytosis in C. elegans is regulated by cell cycle components including separase. Development, 2007. 134(21): p. 3837-48.
15. Poteryaev, D., et al., Caenorhabditis elegans SAND-1 is essential for RAB-7 function in endosomal traffic. EMBO J, 2007. 26(2): p. 301-12.
16. Immonen, T., et al., A proGDNF-related peptide BEP increases synaptic excitation in rat hippocampus. Exp Neurol, 2008. 210(2): p. 793-6.
17. Poteryaev, D. and A. Spang, Application of RNAi technology and fluorescent protein markers to study membrane traffic in Caenorhabditis elegans. Methods Mol Biol, 2008. 440: p. 331-47.
18. Poteryaev, D., et al., Identification of the switch in early-to-late endosome transition. Cell, 2010. 141(3): p. 497-508.
19. Blagodatski, A., D. Poteryaev, and V.L. Katanaev, Targeting the Wnt pathways for therapies. Mol Cell Ther, 2014. 2: p. 28.
20. Solinger, J.A., D. Poteryaev, and A. Spang, Application of RNAi technology and fluorescent protein markers to study membrane traffic in C. elegans. Methods Mol Biol, 2014. 1174: p. 329-47.
21. Bobkov, V.A., et al., Recombinant C1 Esterase Inhibitor Reduces Cytokine Storm in an Ex Vivo Whole Blood Model. J Interferon Cytokine Res, 2017. 37(7): p. 325-329.
22. V Simonov, S Ivanov, M Smolov, S Abbasova, A Piskunov and D Poteryaev (2019) Control of therapeutic IgG antibodies galactosylation during cultivation process and its impact on IgG1/FcγR interaction and ADCC activity. Biologicals. 2019 Mar;58:16-21. doi: 10.1016/j.biologicals.2019.01.002. Epub 2019 Jan 15.
23. Потеряев, Д. А., Хамитов, Р. А., Ефимов, Г. А., & Шустер, А. М. (2020). Перспективы использования технологической платформы ELISPOT в системе противоэпидемических мероприятий против новой коронавирусной инфекции COVID-19. БИОпрепараты. Профилактика, диагностика, лечение, 20(3), 146-158.
24. Потеряев, Д. А., Аббасова, С. Г., Игнатьева, П. Е., Стрижакова, О. М., Колесник, С. В., & Хамитов, Р. А. (2021). Оценка Т-клеточного иммунитета к SARS-CoV-2 у переболевших и вакцинированных против COVID-19 лиц с помощью ELISPOT набора ТиграТест® SARS-CoV-2. БИОпрепараты. Профилактика, диагностика, лечение, 21(3), 178-192.
Патенты
1. METHOD FOR PURIFICATION OF IMIGLUCERASE RU2668158 (C1) 2018-09-26
2. COMBINATION THERAPY FOR TREATING HEMORRHAGIC SHOCK RU2663464 (C1) 2018-08-06
3. MEANS FOR TREATMENT OF DISEASE WITH MACULAR OEDEMA DUE TO EXCESSIVE VEGF-A EXPRESSION RU2016148710 (A) 2018-06-13
4. BISPECIFIC ANTIBODIES AGAINST CD3*CD19: RU2015151459 (A) 2017-06-06
5. Compounds related to or derived from GFR alpha4 and their use: US7488588 (B1) 2009-02-10
6. Ret-independent signaling pathway for GDNF: US6905817 (B1) 2005-06-14
7. A NOVEL RET-INDEPENDENT SIGNALING PATHWAY FOR GDNF: WO0020867 (A1) 2000-04-13
Членство в профессиональных организациях:
Эксперт проектного офиса государственной программы Российской Федерации «Научно-технологическое развитие Российской Федерации».
Все мероприятия портала «Здоровое Образование»